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ABSTRACT
In the past decade, there have been a large number of transfer
learning algorithms proposed for various real-world applications.
However, most of them are vulnerable to negative transfer1 since
their performance is even worse than traditional supervised model-
s. Aiming at more robust transfer learning models, we propose an
ENsemble framework of anCHOR adapters (ENCHOR for short),
in which an anchor adapter adapts the features of instances based
on their similarities to a specif c anchor (i.e., a selected instance).
Specif cally, the more similar to the anchor instance, the higher de-
gree of the original feature of an instance remains unchanged in the
adapted representation, and vice versa. This adapted representation
for the data actually expresses the local structure around the corre-
sponding anchor, and then any transfer learning method can be ap-
plied to this adapted representation for a prediction model, which
focuses more on the neighborhood of the anchor. Next, based on
multiple anchors, multiple anchor adapters can be built and com-
bined into an ensemble for f nal output. Additionally, we develop
an effective measure to select the anchors for ensemble building to
achieve further performance improvement. Extensive experiments
on hundreds of text classif cation tasks are conducted to demon-
strate the effectiveness of ENCHOR. The results show that: when
traditional supervised models perform poorly, ENCHOR (based on
only 8 selected anchors) achieves 6% − 13% increase in terms of
average accuracy compared with the state-of-the-art methods, and
it greatly alleviates negative transfer.

Categories and Subject Descriptors
I.2.6 [Artif cial Intelligence]: Learning–Machine Learning

1. INTRODUCTION
Traditional classif cation algorithms often fail to obtain satisfac-

tory performances, since the assumption that the training data from
source domain and test data from target domain are drawn from the
same distribution does not always hold in real-world application-
s. Transfer learning focuses on adapting the common knowledge
1Here we say the “negative transfer" occurs when the accuracy
from transfer learning algorithm is lower than the one of supervised
learning algorithm, i.e., Logistic Regression (LR) in this paper.
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from related source domain to improve the learning performance
in target domain with distribution mismatch, and has attracted vast
amount of research studies in the past decade [1].
Generally, the proposed transfer learning algorithms can be grouped

into two types, i.e., single model [2, 3, 4] learning and ensemble
learning [5, 6, 7, 8]. For the f rst type, Liao et al. [2] f rst estimat-
ed the degree of mismatch of each instance in the source domain
with the whole target domain, and then presented an active learn-
ing approach for selecting the labeled examples in target domain.
Finally they incorporated this information into logistic regression
for transfer learning. Chen et al. [4] tried to learn robust data repre-
sentations by reconstruction, recovering original features from data
that are artif cially corrupted with noise for transfer learning. All
the above methods are only based on single model learning, which
may not achieve stable and robust results. In this paper, we try to
ensemble the outputs on multi-model level, which considers the lo-
cal structure of source and target domains simultaneously for each
local model. For the second type, there are several transfer learning
methods, which focus on learning frommultiple source domains [5,
6] and assigning different weights to models [7, 8]. Gao et al. [7]
proposed a locally weighted ensemble framework to combine mul-
tiple models for transfer learning, where the weights are dynami-
cally assigned according to a model’s predictive power on each test
example. However, most of these methods do not explicitly exploit
the local structures of source and target domain simultaneously.
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Figure 1: The Intuitive Example of Why Selecting Anchor
It is often observed that the source and target domains may not

be closely related over all the data. However, it is possible to make
safe transfer if the training performs only in the same local neigh-
borhood areas of the source and target domains. The intuitive ex-
ample is shown in Figure 1. In this example, we show a toy data set
with two dimensions, and the source domain and target domain da-
ta are plotted in Figure 1(a), where red “∗" and “△" denote positive
instances and blue “◦" and “2" denote negative ones. Obviously,
we can f nd that the source domain and target domain have differ-
ent distributions, and the classif er trained from the source domain
may not give satisfying predictions on target domain. If we can
select the data points from source and target domains that located
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in the same local neighborhood area, then the classif cation perfor-
mance would be better. In Figure 1(b), for given anchor red solid
“◦", we calculate the similarities between the anchor and the rest
data points, then we plot all data points with different colors (i.e.,
indicating different degree of similarities with the anchor.). Note
that, cosine distance is used to compute the similarity of two data
points. In this f gure, red data points mean the similar ones with
the anchor, while the black ones are dissimilar with the anchor. We
can f nd that the data points located in the same local neighborhood
area can be selected, and based on them the classif cation perfor-
mance may be much better. Motivated by this observations, we
propose an ENsemble framework of anCHOR adapters (ENCHOR
for short) for transfer learning, in which each anchor adapter adapt-
s the features of instances (from both source and target domains)
based on their similarities to a specif c anchor (an instance selected
from source or target domains). Specif cally, the more similar to
the anchor instance, the higher degree of the original feature of an
instance remains unchanged in the adapted representation, and vice
versa. In other words, the instances from both source and target do-
mains are more likely to be unchanged if they are more similar to
the selected anchor. Thus, the data distributions after adaption for
both source and target domains are more likely to be similar, and
the models learned over the adapted data may achieve better per-
formance (at least in the corresponding local area). Then, based on
multiple anchors, multiple anchor adapters can be built and com-
bined into an ensemble for f nal output. Additionally, we develop
an effective measure to select the anchors for ensemble building to
achieve further performance improvement. Extensive experiments
on hundreds of text classif cation tasks are conducted to demon-
strate the effectiveness of ENCHOR. The results show that: when
traditional supervised models perform poorly, ENCHOR (based on
only 8 selected anchors) achieves 6% − 13% increase in terms of
average accuracy compared with the state-of-the-art methods, and
it greatly alleviates negative transfer.
The remainder of this paper is organized as follows. We intro-

duce the proposed framework in Section 2, and then propose the
anchor selection strategy in Section 3. In Section 4, we conduct ex-
tensive experiments on text classif cation problems to demonstrate
the effectiveness of the proposed algorithm. Related work is sum-
marized in Section 5. Finally, Section 6 concludes the paper.
2. ENSEMBLE OF ANCHOR ADAPTERS
Next, we propose an ensemble of anchor adapters for transfer

learning. Note that, bold letters, such as u and v, are used to rep-
resent vectors. Data matrices are written in bold upper case, such
as X and Y . Also, X(i,j) indicates the i-th row and j-th column
element of matrix X . Calligraphic letters, such as A and D, are
used to represent sets. Finally, we use R and R+ to denote the sets
of real numbers and nonnegative real numbers. Without specif cal
illustration, all the vectors are column vectors.
2.1 Anchor-based Adapter
Given the source domain with labeled dataDs = {x

(s)
i , y

(s)
i }|ns

i=1

and target domain with unlabeled data Dt = {x
(t)
i }|nt

i=1, and their
corresponding word-document co-occurrence matrices are Xs ∈
R

m×ns

+ and Xt ∈ R
m×nt

+ , where m is the number of features
and ns, nt are respectively the numbers of instances in source
domain and target domain. First, we randomly select q anchors
(a1,a2, · · · ,aq) (i.e., an anchor is an instance) from source or
target domain, then compute the similarities between each anchor
and the source (target) domain data. To compute the similarity,
we can use the Gaussian distance function or cosine distance func-
tion. In this paper, we adopt the cosine function cos (a,x) =

a
⊤
x√

a
⊤
a·

√
x
⊤
x

. Then for the τ -th anchor, we can adapt the data ma-

trices of Xs and Xt from source and target domains to new data
matrices X̂s

(τ)
and X̂t

(τ)
, called anchor-adapted matrices in this

paper. The computations of X̂s

(τ)
and X̂t

(τ)
are as follows,

X̂s

(τ)
= (cos(aτ ,x

(s)
1 ) · x

(s)
1 , · · · , cos(aτ ,x

(s)
ns

) · x(s)
ns

),

X̂t

(τ)
= (cos(aτ ,x

(t)
1 ) · x

(t)
1 , · · · , cos(aτ ,x

(t)
nt

) · x(t)
nt

).
(1)

By the anchor-based adapter, the high similar instances with anchor
from source and target domains are retained, while the importance
of the instances with low similarities to anchor are degraded.
There are several advantages can be benef ted from the proposed

framework, 1) For each anchor, only the similar instances from
source and target domains are selected according to the similari-
ties, then the new constructed source domain and target domain
become more similar and their distribution difference is decreased.
2) Since the distributions of the new constructed data matrices are
similar, we believe the better prediction results can be achieved.
3) The proposed framework ENCHOR is very easy to parallelize,
since the anchors are independent of each other.

2.2 Ensemble of Anchor Adapters
Given q randomly selected anchors (a1,a2, · · · ,aq) and ac-

cording to the anchor-based adapter, we can obtain q pairs of new
source and target domains ((X̂s

(1)
, X̂t

(1)
), (X̂s

(2)
, X̂t

(2)
), · · · ,

(X̂s

(q)
, X̂t

(q)
)). We can perform any transfer learning algorith-

m on each pair of new source domain and target domain, and the
output predictions on target domain data can be obtained. For
the selected q anchors, we can f nally get q predictions (Ĝt

(1)
,

Ĝt

(2)
, · · · , Ĝt

(q)
) for target domain, where Ĝt

(τ)
∈ R

nt×c
+ (τ ∈

{1, · · · , q}, c is the number of instance classes.). Each row of Ĝt

denotes the prediction vector of an instance yielding to
∑c

j
Ĝt(i,j) =

1, and Ĝt(i,j) is the prediction probability of instance x
(t)
i belong-

ing to class j.
In the proposed framework ENCHOR, all the output predictions

can be combined in two ways, one is in weighted manner and the
other with simply average predictions,

Ḡt
w
(i,·) =

∑q

τ=1 cos(aτ ,x
(t)
i ) · Ĝt

(τ)

(i,·)
∑q

τ ′=1 cos(aτ ′ ,x
(t)
i )

, Ḡt
a
(i,·) =

∑q

τ=1 Ĝt

(τ)

(i,·)

q
.

(2)
Actually, these two ways achieve very similar results in our experi-
ments, so we will only list the weighted version in the experimental
section. Our framework ENCHOR is a general framework, which
can be adapted to any transfer learning with probabilistic output-
s. In this paper, we implement ENCHOR based on non-negative
matrix tri-factorization for transfer learning [9].

3. SELECTION STRATEGYFORANCHORS
As you have noted in Section 2, the anchors are randomly se-

lected. Actually, the randomly selected anchors may lead to poor
performance, since they may be outliers or located in low density
area. How to select the effective anchors is very important and chal-
lenging to obtain outstanding transfer learning performance. To the
best of our knowledge, there has not yet previous work devoting to
this task. Next, we will propose our strategy and some baseline
strategies for selecting anchors.
3.1 The Proposed Strategy
Given the q anchors (a1,a2, · · · ,aq) and the corresponding

output predictions (Ĝt

(1)
, Ĝt

(2)
, · · · , Ĝt

(q)
) by the iterating al-

gorithm, we propose an effective measure to select the high-quality
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anchors. We require the measure have the following properties, 1)
the value range of the measure to be [0,1]; 2) larger value of the
measure indicates the better of the anchor. Therefore, we will on-
ly select the top ℓ anchors with the largest values of the proposed
measure for f nal ensemble of anchor adapters.
Along this line, we f rst introduce two criterions based on Shan-

non Entropy to measure the conf dence and class ratio when per-
forming prediction. For each test instance, we hope the classif ers
trained on the anchor-adapted data sets can predict the instance to
some class with the highest conf dence. Take the binary classif -
cation problem as an example, if an instance x belongs to the f rst
class, then we think the prediction vector (1, 0) is better than the
one (0.6, 0.4), since the classif er assigns x with the label of f rst
class with 100% conf dence in the f rst vector. Following, we give
the def nition of conf dence criterion on the i-th instance in target
domain as

Ec(i) =
c∑

j=1

Ĝt(i,j) logc Ĝt(i,j), (3)

where logc is a base-c logarithm, which can ensureEc(i) ∈ [−1, 0],
and c is the number of instance classes. Large value of Ec(i) indi-
cates the classif er can predict the instance xi into some class with
high conf dence. Since Ec(i) ∈ [−1, 0], so we make a slight a-
mendment to let Êc(i) = Ec(i) + 1 ∈ [0, 1], then the conf dence
criterion over all target domain data is def ned,

Ec =
1

nt

nt∑

i=1

Êc(i), Ec ∈ [0, 1]. (4)

Obviously, when the classif er predicts all the instances from target
domain with 100% conf dence, Ec gets the largest value 1.
For the class ratio criterion, we assume that it would be better

if the classif er can give the predictions with the true class ratio of
target domain. Assuming that the true class distribution of target
domain is p = (p1, p2, · · · , pc),

∑c

i
pi = 1, and the predicted

class distribution is p̂ = (p̂1, p̂2, · · · , p̂c),
∑c

i
p̂i = 1, where n(j)

t

be the number of instances belonging to class j and the label of
x

(t)
i is computed as maxj Ĝt(i,j), then the class ratio criterion is

def ned as

Er =
c∑

j=1

p̂i

pi ·N
logc

pi ·N

p̂i
, Er ∈ [0, 1], (5)

where N =
∑c

j=1
p̂i
pi

is the normalization factor. When the pre-
dicted class distribution is the same as the true class distribution,
i.e., p̂c = pc, Er gets the largest value 1.
Based on the above two criterions, we f nally come to the pro-

posed measure for selecting high-quality anchors,

Ecr = Ec × Er, Ecr ∈ [0, 1]. (6)

In this measure, we simultaneously consider the conf dence crite-
rion and class ratio criterion. In other word, we hope the classif er
not only can predict the instances with high conf dence, but also
the predicted class distribution can be the same as the true one.
However, in real-world applications, we always do not know the
true class distribution of target domain. In this case, we simple
set p = ( 1

c
, 1
c
, · · · , 1

c
) when computing our measure. Fortunately,

the experimental results in Section 4 show that the proposed mea-
sure can also work well even when the true class distribution is
unknown.
After sorting the q values of Ecr (each anchor corresponding to

a value of Ecr), we select the top ℓ anchors with the largest values

of Ecr . Then, the f nal output is

Ḡ∗
t

w

(i,·) =

∑ℓ

τ=1 w
(τ)

t(i) · Ĝt

(τ)

(i,·)
∑ℓ

τ ′=1 w
(τ ′)

t(i)

. (7)

The proposed framework with and without selection strategy are
denoted as ENCHOR∗ and ENCHOR, respectively.
3.2 Some Baseline Strategies
To validate the effectiveness of our strategy, we also introduce

some baseline strategies to select anchors. Kullback-Leibler (KL)
divergence [10] and Maximum Mean Discrepancy (MMD) [11]
are used to measure the distribution difference between different
domains, and some works [12, 13] have adopted them for transfer
learning. Smaller values of KL divergence and MMD can usually
lead to better transfer learning performance, so we also adapt them
to anchor selection.

4. EXPERIMENTAL EVALUATION
In this section, we construct hundreds of classif cation problems

to validate the effectiveness of the proposed framework ENCHOR.
Note that we only focus on binary classif cation problems, while
obviously our algorithm can handle multi-class classif cation prob-
lems.
4.1 Data Preparation
We adopt the widely use data set 20Newsgroups2, which is one of

the benchmark data sets for evaluating transfer learning algorithm-
s [1, 7, 14, 3]. This corpus has approximately 20,000 newsgroup
documents, which are evenly divided into 20 subcategories. Some
similar subcategories are grouped into a top category, e.g., the four
subcategories sci.crypt, sci.electronics, sci.med and sci.space be-
long to the top category sci. We select three top categories, i.e.,
rec, sci and talk, to construct the classif cation problems. The top
categories are used for classif cation, e.g., in the combination rec
vs. sci, the data from rec are positive instances, while the data from
sci are negative ones.
To construct the transfer learning tasks, we follow the approach

in [9]. For the combination rec vs. sci, we randomly select a sub-
category from rec as positive class and a subcategory from sci as
negative class to produce the source domain. The target domain is
similarly constructed, thus in totally 144 (P 2

4 · P 2
4 ) classif cation

tasks are generated for this combination. We have three combina-
tions for the three top categories rec, sci and talk, i.e., rec vs. sci,
rec vs. talk and sci vs. talk, and in totally 432 (144× 3) classif ca-
tion problems are constructed.
For the above constructed classif cation tasks, they almost have

balanced class distribution. To validate our algorithm can also per-
form well when the classes are unbalanced, we change the ratios of
positive instances and negative instances in target domain on 144
problems of the combination rec vs. sci. Specif cally, we only ran-
domly sample 50%, 40%, 30%, 20% and 10% negative instances
for each task, then the corresponding ratios are 2:1, 2.5:1, 3.3:1, 5:1
and 10:1. The average results are reported on three independent tri-
als.
4.2 Experimental Settings
4.2.1 Baselines
we compare our algorithm ENCHOR with the following state-

of-the-art baselines, including
• The supervised algorithm: Logistic Regression (LR) [15];
• The transfer learning methods:

− Transfer learning based on non-negative matrix tri-factorization
2http://people.csail.mit.edu/jrennie/20Newsgroups/.
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(MTrick) [9], which does not consider the local transfer and
anchor selection strategy;
− Locally weighted Ensemble (LWE) [7], in which the clas-
sif cation models are assigned with different weights accord-
ing to the local structure of each test instance;
−Marginalized Stacked Denoising Autoencoders (mSDA) [4],
which learns robust features for transfer learning;

• We also compare our anchor selection strategy Ecr with the
following four strategies, conf dence Criterion (Ec) in E-
q. (4), class ratio criterion (Er) in Eq. (5), Kullback-Leibler
(KL) divergence [10] and Maximum Mean Discrepancy (M-
MD) [11].

4.2.2 Parameter Settings
In ENCHOR, the parameters of the number of word clusters k,

trade-off factor β, error threshold ε and the maximal number of
iterations T are set following the suggestion of MTrick [9], k = 50,
β = 1, ε = 10−11, T = 100. After some preliminary test, the
parameters of q and ℓ are set as 50 and 8 for all selection strategies.
The parameters of the baselines are set according to the suggestions
of their original papers.
The variables F̂s, F̂t and Ĝt are initialized as the feature clus-

tering results by PLSA [16] on the whole data set of the source
and target domain. We adopt the Matlab implementation of PLSA3

in the experiments. Ĝs is initialized as the true class information
in the source-domain, and Ĝt is initialized as the predicted results
of any supervised classif er, which is trained based on the source
domain data. In this experiment Logistic Regression is adopted to
give these initial results.
4.3 Results on Classif cation Problems with Bal-

anced Classes
4.3.1 Comparison among ENCHOR, MTrick, LWE,

mSDA and LR
Indeed, the anchors can be randomly selected from source do-

main or target domain, and there are different explanations for these
two ways. If we select the anchors from source domain, then each
time we choose the similar instances from target domain to predic-
t; while if the anchors selected from target domain, each time the
similar instances from source domain are chosen for training. In
these two ways, the propose algorithms are denoted as ENCHORs,
ENCHOR∗

s for selecting anchors from source domain, and ENCHORt,
ENCHOR∗

t for selecting anchors from target domain. ENCHOR∗
s

and ENCHOR∗
t are output by the proposed anchor selection strat-

egy. The detailed results on rec vs. sci of all compared algorithms
are shown in Figure 2 (The results on the other two combinations
are very similar with rec vs. sci), and the average accuracies are
reported in Table 1. In Figure 2, the classif cation problems are
sorted with the increasing order by the accuracies of LR. Thus, the
x-axes in these f gures can also indicate the degree of diff culty in
knowledge transferring. To clearly validate the superiority of our
algorithms, the 144 problems are divided into two parts in Table 1.
The f rst part includes the problems with accuracies from MTrick
lower than 90%, on which we thinkMTrick could not perform well.
The other part contains the ones whose accuracies are greater than
or equivalent to 90%, on which MTrick can achieve satisfying per-
formance. In Table 1, the third column indicates the number of
problems whose accuracies from MTrick < 90% or ≥ 90%. The
number in the parentheses denotes how many problems suffering
from negative transfer for the compared algorithms.
From the results in Figure 2 and Table 1, we have the following

insightful observations:
3http://www.kyb.tuebingen.mpg.de/bs/people/pgehler/code/index.html

• In Figure 2(a) and Table 1, we f nd that 1) both ENCHOR∗
t

and ENCHOR∗
s are signif cantly better than ENCHORt and

ENCHORs, which indicates the effectiveness of the proposed
selection strategy Ecr , and the randomly selected anchors
maybe outliers or located in low dense area; 2) from a general
view, the results of selecting anchors from target domain are
very similar with the ones of selecting anchors from source
domain. Therefore, in Figure 2(b) and the following sections,
we only list the results of ENCHOR∗

t .
• Overall, all the transfer learning algorithms are better than
LR, which implies that the traditional learning algorithmmay
be not suitable for transfer learning tasks.

• ENCHOR∗
t and MTrick dramatically outperform LWE and

mSDA.MTrick achieves unstable performance in Figure 2(b),
especially when the accuracy of LR is low, which indicates
that MTrick can not perform well on diff cult transfer learn-
ing problems. Overall, our algorithm ENCHOR∗

t obtains the
best results.

• To clear validate the robustness of ENCHOR∗
t and ENCHOR∗

s ,
it can be observed from Table 1 that ENCHOR∗

t and ENCHOR∗
s

perform signif cantly better than all the baselines when the
accuracy of MTrick is lower than 90%.

• Except ENCHOR∗
t and ENCHOR∗

s , all the compared algo-
rithms suffer from negative transfer learning, which again
shows the robustness and effectiveness of the proposed an-
chor selection strategy.

In a word, all the results demonstrate the superiority of the pro-
posed algorithms ENCHOR∗

t and ENCHOR∗
s .

4.3.2 Comparison of Anchor Selection Strategies
To investigate the effectiveness of the proposed anchor selection

strategy Ecr , we compare it with the other four strategies, i.e., Ec,
Er , KL and MMD. T average accuracies over 144 problems are
list in Table 2. From these results, we can f nd that the selection
strategies Ecr and Er are signif cantly better than the other three
strategies MMD, KL and Ec, and Ec obtains the worst results. It is
also observed that, all the selection strategies outperform LR with
respect to the average accuracies in Table 2. Though Er performs
very similar withEcr , these results are based on the conditions that
the problems are with balanced class distributions. In Section 4.4,
we will show that the results ofEcr is better thanEr when the tasks
are with unbalanced classes.
Table 2: Average results (%) on Three Combinations for Selec-
tion Strategy Comparison
Combination Ecr Er MMD KL Ec LR
rec vs. sci 94.77 95.10 90.69 90.69 78.93 65.57
rec vs. talk 94.43 95.47 92.58 91.81 86.35 72.46
sci vs. talk 91.88 91.85 88.65 86.63 76.54 70.65
Note that, the result of Ecr is the same as the one of ANCHOR∗

t .

4.4 Results on Classif cation Problems with Un-
balanced Classes

In this section, we want to show that our algorithm can also per-
form well under the unbalanced class condition. We intentionally
change the ratio of positive and negative instances in the target do-
main of 144 problems on rec vs. sci, and the ratios includes 2:1,
2.5:1, 3.3:1, 5:1 and 10:1. The strategy Er can achieve good re-
sults when the classes are balanced in Section 4.3.2, therefore we
compare ENCHOR∗

t with MTrick, Er and LR here. The detailed
results are shown in Table 3. Sometimes, the class ratio maybe
unknown and can not be estimated, so in this case we simply set
p = ( 1

c
, · · · , 1

c
), i.e., the uniform class distribution. We denote
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Figure 2: The Performance Comparison among ENCHOR, MTrick, LWE, mSDA and LR on rec vs. sci

Table 1: Average Results (%) on Three Combinations for the Comparison of ENCHOR, MTrick, LWE, mSDA and LR
Combination Problems # ENCHOR∗

t ENCHOR∗
s ENCHORt ENCHORs MTrick LWE mSDA LR

rec vs. sci
< 90 31 90.84(0) 91.34(0) 75.16(2) 77.01(2) 77.61(0) 67.16(10) 63.01(5) 61.22
≥ 90 113 95.85(0) 95.49(0) 91.47(0) 92.24(1) 96.19(0) 73.59(14) 69.22(20) 66.76
Total 94.77(0) 94.59(0) 87.96(2) 88.96(3) 92.19(0) 72.20(24) 67.88(25) 65.57

rec vs. talk
< 90 13 92.56(0) 95.88(0) 83.09(2) 84.32(2) 86.89(0) 83.86(0) 77.13(0) 70.75
≥ 90 131 94.61(0) 95.64(0) 92.93(3) 93.66(3) 96.23(0) 78.11(20) 77.86(0) 72.63
Total 94.43(0) 95.66(0) 92.04(5) 92.82(5) 95.39(0) 78.63(20) 77.79(0) 72.46

sci vs. talk
< 90 27 87.45(0) 84.55(0) 77.17(2) 75.55(4) 80.99(2) 69.42(4) 65.81(2) 62.15
≥ 90 117 92.90(0) 93.55(0) 89.68(2) 90.38(2) 94.61(0) 82.78(1) 75.75(13) 72.61
Total 91.88(0) 91.86(0) 87.33(4) 87.60(6) 92.06(2) 80.27(5) 73.89(15) 70.65

Table 3: Average Results (%) on rec vs. sci for Unbalanced Class Classif cation
Ratio Problems # ENCHOR∗(u)

t E
(u)
r ENCHOR∗

t Er MTrick LR

2:1
< 90 51 87.13 80.32 89.60 83.20 68.50 57.86
≥ 90 93 93.72 87.56 94.58 89.34 95.48 66.60
Total 91.38 85.00 92.81 87.16 85.92 63.51

2.5:1
< 90 71 85.38 77.82 89.30 83.87 68.21 59.59
≥ 90 73 92.04 85.10 94.11 88.49 95.51 66.09
Total 88.76 81.51 91.74 86.21 82.05 62.89

3.3:1
< 90 91 77.77 71.59 86.80 81.38 64.10 59.09
≥ 90 53 88.11 81.04 93.35 88.91 95.19 67.50
Total 81.58 75.07 89.21 84.15 75.54 62.19

5:1
< 90 114 68.34 66.77 83.92 81.37 61.31 58.13
≥ 90 30 82.53 75.84 91.25 88.22 93.26 73.88
Total 71.29 68.66 85.45 82.79 67.97 61.41

10:1
< 90 131 61.29 59.22 78.40 77.38 54.13 58.60
≥ 90 13 75.64 68.94 88.53 88.98 93.89 79.12
Total 62.58 60.10 79.32 78.43 57.72 60.45

our algorithms and Er as ENCHOR∗(u)
t and E(u)

r in Table 3 when
the true class distribution of target domain is unknown.
From these results, we f nd that 1) ENCHOR∗

t outperforms all
the baselines under different ratios for unbalanced class classif ca-
tion; 2) with the increasing values of ratio, the accuracies from all
algorithms decrease and the number of problems whose accuracies
from MTrick lower than 90% increases; 3) ENCHOR∗(u)

t also per-
forms better than all baselines, which indicates that all the baselines
are signif cantly inf uenced by the class imbalance. In summary,
these results again validate the effectiveness of our algorithm.

5. RELATEDWORKS
Transfer learning has provoked suff cient attention in recent years,

and there are many algorithms are proposed following different

pipelines. Here, we group them into two types, namely learning
from single source domain and learning multiple source domains
for transfer learning.
For the works of learning from single source domain, Dai et

al. [17] proposed a novel transfer-learning algorithm based on an
EM-based Naive Bayes classif ers, which f rst estimated the ini-
tial probabilities under a distribution of source domain data and
then used an EM algorithm to revise the model for the distribution
of target domain data. Si et al. [18] proposed a transfer subspace
learning framework, which includes two items. The f rst one is
the general subspace learning framework, while the second one is
to minimize the Bregman divergence between the distribution of
source and target domains in the selected subspace. There are al-
so several works based on matrix factorization. Zhuang et al. [9]
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f rst argued the associations between word clusters and document
classes maybe stable across different domains, and then proposed a
new transfer learning algorithm based on non-negative matrix fac-
torization. Pan et al.[19] proposed transfer component analysis to
learn some transfer components across domains in a reproducing
kernel Hilbert space using maximum mean discrepancy. However,
these methods do not make full use of the neighbourhood struc-
tures of source and target domains. It is excited that the proposed
framework can be easily adapted to these matrix factorization based
method to improve performance.
Along the second pipeline, Duan et al. [20] proposed to learn a

robust decision function for the target domain data by leveraging
a set of auxiliary/source classif ers from multiple source domains.
Mansour et al. [21] presented a theoretical analysis of the problem
of domain adaptation with multiple sources, and remarked that for
any f xed target function, there exists a distribution weighted com-
bining rule that has a loss of at most ǫ with respect to any target
mixture of the source distributions. Dredze at al. [8] developed
a new multi-domain online learning framework based on parame-
ter combination from multiple classif ers to a new target domain,
based on an online learning algorithm for linear classif ers that in-
corporates conf dence about each parameter into the update. Ge et
al. [22] proposed a novel two-phase framework to effectively trans-
fer knowledge from multiple sources. However, all the above algo-
rithms need multiple source domains. Our method focuses on one
source domains, and through elaborately selecting the anchors, the
f nal prediction is the weighted sum of outputs of anchor adapters.

6. CONCLUSIONS
In this paper, we argue that the transfer learning algorithms per-

forming on the original source and target domains may not obtain
stable performance due to the large gap of distribution difference.
Then along this line, we propose a transfer learning framework,
called ensemble of anchor adapters, and implement it based on non-
negative matrix tri-factorization. Specif cally, the anchors are f rst
selected from source domain or target domain, and then only the
similar instances from both domains are chosen to form anchor-
adapted matrices, between which the distribution difference can be
reduced. Moreover, we design an entropy based strategy to select
high-quality anchors, leading to the outstanding and robust result-
s. Finally, extensive experiments on text classif cation demonstrate
the effectiveness and robustness of the proposed method.
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